

Problem of the Week
Problem D and Solution
Wipe Away 2

Problem

Ajay writes the positive integers from 1 to 1000 on a whiteboard. Jamilah then erases all the numbers that are multiples of 9 . Magdalena then erases all the remaining numbers that contain the digit 9 . How many numbers are left on the whiteboard?

Note: In solving this problem, it may be helpful to use the fact that a number is divisible by 9 exactly when the sum of its digits is divisible by 9 . For example, the number 214578 is divisible by 9 since $2+1+4+5+7+8=27$, which is divisible by 9 . In fact, $214578=9 \times 23842$.

Solution

We first calculate the number of integers that Jamilah erases, which is the number of multiples of 9 between 1 and 1000 . Since $1000=(111 \times 9)+1$, there are 111 multiples of 9 between 1 and 1000. Thus, Jamilah erases 111 numbers from the whiteboard.

Now let's figure out how many of the integers from 1 to 1000 contain the digit 9 . The integers from 1 to 100 that contain the digit 9 are $9,19, \ldots, 79,89$ as well as $90,91, \ldots, 97,98,99$. Thus, there are 19 positive integers from 1 to 100 that contain the digit 9. Since there are 19 integers from 1 to 100 that contain the digit 9 , it follows that there are $19 \times 9=171$ integers from 1 to 899 that contain the digit 9 .

Between 900 and 1000, there are 100 integers that contain the digit 9, namely, every number except for 1000 . Thus, in total, $171+100=271$ of the integers from 1 to 1000 contain the digit 9 .

However, some of the integers that contain the digit 9 are also multiples of 9 , so were erased by Jamilah. To determine how many of these such numbers there are, we use the fact that a number is divisible by 9 exactly when the sum of its digits is divisible by 9 .

- The only one-digit number that contains the digit 9 and is also a multiple of 9 is 9 itself.
- The only two-digit numbers that contain the digit 9 and are also multiples of 9 are 90 and 99 .
- To find the three-digit numbers that contain the digit 9 and are also multiples of 9 , we will look at their digit sum.
- Case 1: Three digit-numbers with a digit sum of 9:

The only possibility is 900 . Thus, there is 1 number.

- Case 2: Three digit-numbers with a digit sum of 18:
* If two of the digits are 9 , then the other digit must be 0 . The only possibilities are 909 and 990 . Thus, there are 2 numbers.
* If only one of the digits is 9 , then the other two digits must add to 9 . The possible digits are $9,4,5$, or $9,3,6$, or $9,2,7$, or $9,8,1$. For each of these sets of digits, there are 3 choices for the hundreds digit. Once the hundreds digit is chosen, there are 2 choices for the tens digit, and then the remaining digit must be the ones digit. Thus, there are $3 \times 2=6$ possible three-digit numbers for each set of digits. Since there are 4 sets of digits, then there are $4 \times 6=24$ possible numbers.
- Case 3: Three digit-numbers with a digit sum of 27:

The only possibility is 999 . Thus, there is 1 number.
Therefore, there are $1+2+24+1=28$ three-digit numbers from 1 to 1000 that contain the digit 9 , and are also multiples of 9 .

Thus, there are $1+2+28=31$ numbers that contain the digit 9 , but were erased by Jamilah. It follows that Magdalena erases $271-31=240$ numbers from the whiteboard.

Hence, the number of numbers left on the whiteboard is $1000-111-240=649$.

